
L13

The Astrophysical Journal, 633:L13–L16, 2005 November 1
� 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

EXACT VERSUS APPROXIMATE SOLUTIONS IN GAMMA-RAY BURST AFTERGLOWS

Carlo Luciano Bianco and Remo Ruffini
International Center for Relativistic Astrophysics, Dipartimento di Fisica, Universita` di Roma “La Sapienza,”

Piazzale Aldo Moro 5, I-00185 Rome, Italy; bianco@icra.it, ruffini@icra.it
Received 2005 July 18; accepted 2005 September 20; published 2005 October 12

ABSTRACT

We have recently obtained the exact analytic solutions for the relativistic equations relating the radial and time
coordinates of a relativistic, thin uniform shell expanding in the interstellar medium in the fully radiative and
fully adiabatic regimes. Here we reexamine the validity of the constant-index power-law relation between the
Lorentz gamma factor and its radial coordinate, which is usually adopted in the gamma-ray burst (GRB) literature
on the grounds of an “ultrarelativistic” approximation. Such expressions are found to be mathematically correct
but only approximately valid in a very limited range of physical and astrophysical parameters and in an asymptotic
regime that is reached for a very short time only, if at all, and they are shown to be nonapplicable to GRBs.

Subject headings: gamma rays: bursts — gamma rays: observations — ISM: kinematics and dynamics —
relativity

1. INTRODUCTION

The discovery of afterglows (Costa et al. 1997) has us offered
a very powerful tool for understanding gamma-ray bursts
(GRBs). A consensus has been reached that such an afterglow
originates from a relativistic, thin shell of baryonic matter prop-
agating in the interstellar medium (ISM) and that its description
can be obtained from the relativistic conservation laws of en-
ergy and momentum. In Bianco & Ruffini (2005) we reported
the exact analytic solutions for the corresponding equations,
respectively, under fully radiative and fully adiabatic condi-
tions, giving, in both cases, explicit relations between the lab-
oratory time and the radial coordinate of the shell. Here we
compare and contrast our results with the simple constant-index
power-law relation between the Lorentz gamma factor and the
radial coordinate of the shell generally adopted in the literature
and obtained using the so-called ultrarelativistic approximation
(see, e.g., Sari 1997, 1998; Waxman 1997; Rees & Me´száros
1998; Granot et al. 1999; Panaitescu & Me´száros 1998, 1999;
Chiang & Dermer 1999; Piran 1999; Gruzinov & Waxman
1999; van Paradijs et al. 2000; Me´száros 2002; and references
therein). We show that such an approximation only holds in a
very limited range of physical and astrophysical parameters
and in an asymptotic regime that is reached for a very short
time only, if at all. We demonstrate that this constant-index
power law cannot be used for modeling GRBs. Illustrative
examples are given for the source GRB 991216.

2. THE AFTERGLOW ANALYTIC SOLUTIONS

The fulfillment of the energy and momentum conservation
for the equations of motion of the relativistic baryonic matter
shell in the laboratory reference frame leads to the following
equations (see, e.g., Piran 1999, Ruffini et al. 2003, and ref-
erences therein):

2dE p (g � 1)dM c , (1a)int ism

2dg p �[(g � 1)/M]dM , (1b)ism

2dM p [(1 � e)/c ]dE � dM , (1c)int ism

2dM p 4pm n r dr, (1d)ism p ism

where M is the shell mass energy, is the ISM numbern ism

density, is the proton mass,e is the emitted fraction of themp

energy developed in the collision with the ISM, and isMism

the amount of ISM mass swept up by the shell within the radius
r: , where is the starting radius3 3M p (4p/3)m n (r � r ) rism p ism 0 0

of the baryonic matter shell. In general, an additional equation
is needed in order to express the dependence ofe on the radial
coordinate. In the following,e is assumed to be constant, and
such an approximation appears to be correct in the GRB
context.

Consensus has also been reached on a simple integration of
the equations of motion, equations (1a)–(1d), in the fully ra-
diative case (e p 1; see Piran 1999, Ruffini et al. 2003, and
Bianco & Ruffini 2005), leading to

�11 � (M /M )(1 � g )[1 � (1/2)(M /M )]ism B 0 ism B
g p , (2a)

�1 �1g � (M /M )(1 � g )[1 � (1/2)(M /M )]0 ism B 0 ism B

where and are the initial values, respectively, of the massM gB 0

and of the Lorentz gamma factor of the baryonic shell. Equa-
tions (1a)–(2a) differ from the ones derived by Blandford &
McKee (1976) in a different framework but often quoted in
the literature within the present context. Correspondingly, in
the fully adiabatic case , equations (1a)–(1d) have the(e p 0)
following analytic solution (see Piran 1999 and Bianco & Ruf-
fini 2005):

2 2g � 2g (M /M ) � (M /M )0 0 ism B ism B2g p . (2b)21 � 2g (M /M ) � (M /M )0 ism B ism B

In Bianco & Ruffini (2005) we have explicitly integrated the
differential equations for in equations (2a) and (2b), re-r(t)
calling that , wheret is the time in the�2 2g p 1 � [dr/(c dt)]
laboratory reference frame. We have then obtained new explicit
analytic expressions for the equations of motion of the relativ-
istic shell that are essential for explicitly obtaining the analytic
expressions of the equitemporal surfaces in the fully radiative
and fully adiabatic cases, respectively (see Bianco & Ruffini
2004, 2005).
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3. APPROXIMATIONS ADOPTED IN THE CURRENT LITERATURE

We turn now to the comparison of the exact solutions given
in equations (2a) and (2b) with the approximations used in the
current literature. Following Blandford & McKee (1976), a so-
called ultrarelativistic approximation has beeng k g k 10

widely adopted by many authors to solve equations (1a)–(1d)
(see references in § 1). This leads to a simple constant-index
power-law relation:

�ag ∝ r , (3)

with in the fully radiative case and in the fullya p 3 a p 3/2
adiabatic case. This simple relation is in contrast to the com-
plexity of equations (2a) and (2b).

We now address the issue of establishing the domain of
applicability of the simplified equation (3) used in the current
literature in both the fully radiative case and the fully adiabatic
case.

3.1. The Fully Radiative Case

We first consider the fully radiative case. If we assume

1/(g � 1) K M /M K g /(g � 1) ! 1, (4)0 ism B 0 0

in the numerator of equation (2a) the linear term inM /Mism B

is negligible with respect to 1, and the quadratic term isa
fortiori negligible, while in the denominator the linear term in

is the leading one. Equation (2a) then becomesM /Mism B

g � [g /(g � 1)]M /M . (5)0 0 B ism

If we multiply the terms of equation (4) by , we(g � 1)/g0 0

obtain , which is equivalent1/g K (M /M )[(g � 1)/g ] K 10 ism B 0 0

to or, using equation (5), tog k [g /(g � 1)](M /M ) k 10 0 0 B ism

g k g k 1, (6)0

which is indeed the inequality adopted in the “ultrarelativistic”
approximation in the current literature. If we further assume

, equation (5) can be further approximated by a simple3 3r k r0

constant-index power law as in equation (3):

3 �3g � [g /(g � 1)]M /[(4/3)pn m r ] ∝ r . (7)0 0 B ism p

We turn now to the range of applicability of these approx-
imations, consistent with the inequalities given in equation (4).
It then becomes manifest that these inequalities can only be
enforced in a finite range of . The lower limit (LL)M /Mism B

and the upper limit (UL) of such range can be conservatively
estimated:

M 1 M gism ism 02 �2p 10 , p 10 . (8a)( ) ( )M g � 1 M g � 1B 0 B 0LL UL

The allowed range of variability, if it exists, is then given by

4M M g � 10ism ism 0�2� p 10 1 0. (8b)( ) ( )M M g � 1B B 0UL LL

A necessary condition for the applicability of the above ap-
proximations is therefore

4g 1 10 . (9)0

It is important to emphasize that equation (9) is only anecessary
condition for the applicability of the approximate equation (7),
but it is notsufficient: equation (7) in fact can be applied only
in a very limited range ofr-values whose upper and lower
limits are given in equation (8a). See for explicit examples
§ 4.

3.2. The Adiabatic Case

We now turn to the adiabatic case. If we assume

1/(2g ) K M /M K g /2, (10)0 ism B 0

in the numerator of equation (2b) all terms are negligible with
respect to , while in the denominator the leading term is the2g0

linear one in . Equation (2b) then becomesM /Mism B

�g � (g /2)M /M . (11)0 B ism

If we multiply the terms of equation (10) by , we obtain2/g0

, which is equivalent to2 21/g K (2/g )(M /M ) K 1 g k0 0 ism B 0

or, using equation (11), to(g /2)(M /M ) k 10 B ism

2 2g k g k 1. (12)0

If we now further assume , equation (11) can be further3 3r k r0

approximated by a simple constant-index power law as in equa-
tion (3):

3 �3/2�g � (g /2)M /[(4/3)pn m r ] ∝ r . (13)0 B ism p

We turn now to the range of applicability of these approx-
imations, consistent with the inequalities given in equation (10).
It then becomes manifest that these inequalities can only be
enforced in a finite range of . The lower limit and theM /Mism B

upper limit of such range can be conservatively estimated:

M 1 M gism ism 02 �2p 10 , p 10 . (14a)( ) ( )M 2g M 2B 0 BLL UL

The allowed range of variability, if it exists, is then given by

2 4M M g � 10ism ism 0�2� p 10 1 0. (14b)( ) ( )M M 2gB B 0UL LL

A necessary condition for the applicability of the above ap-
proximations is therefore

2g 1 10 . (15)0

Again, it is important to emphasize that equation (15) is only
a necessary condition for the applicability of the approximate
equation (13), but it is notsufficient: equation (13) in fact can
be applied only in a very limited range ofr-values whose upper
and lower limits are given in equation (14a). See for explicit
examples § 4.
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Fig. 1.—In the upper panel, the analytic behavior of the Lorentzg factor
during the afterglow era is plotted vs. the radial coordinate of the expanding
thin baryonic shell in the fully radiative case of GRB 991216 (solid red line)
and in the adiabatic case starting from the same initial conditions (dotted blue
line). In the lower panel, the corresponding values of the effective power-law
index (see eq. [16]), which is clearly not constant, is highly varying, andaeff

is systematically lower than the constant values of 3 and 3/2 purported in the
current literature (horizontal dotted black lines), are plotted.

Fig. 2.—In these four diagrams we reproduce the same quantities plotted in Fig. 1 for four higher values of . The upper (lower) left diagram corresponds tog0

( ). The upper (lower) right diagram corresponds to ( ). It is manifest how asymptotically, by increasing the value of , the3 5 7 9g p 10 g p 10 g p 10 g p 10 g0 0 0 0 0

values and (horizontal black dotted lines) are reached, but only in a limited range of the radial coordinate and only for values of much largera p 3 a p 3/2 g0

than the ones actually observed in GRBs.

4. A SPECIFIC EXAMPLE

Having obtained the analytic expression of the Lorentz
gamma factor for the fully radiative case in equation (2a), we
illustrate in Figure 1 the corresponding gamma factor as a
function of the radial coordinate in the afterglow era for GRB
991216 (see Ruffini et al. 2003 and references therein). We
have also represented the corresponding solution that can be
obtained in the adiabatic case, using equation (2b), starting
from the same initial conditions. It is clear that, in both cases,
there is not a simple power-law relation like equation (3) with

a constant indexa. We can at most define an “instantaneous”
value for an “effective” power-law behavior:aeff

d ln g
a p � . (16)eff d ln r

Such an effective power-law index of the exact solution
smoothly varies from 0 to a maximum value that is always
smaller than 3 or 3/2, in the fully radiative and adiabatic cases,
respectively, and finally decreases back to 0 (see Fig. 1). In
particular, from Figure 1, we see how in the fully radiative case
the power-law index is consistently smaller than 3, and in the
adiabatic case is approached only for a small intervala p 3/2eff

of the radial coordinate corresponding to the latest parts of the
afterglow with a Lorentz gamma factor of the order of 10. In
the case of GRB 991216, we have in fact , andg p 310.130

neither equation (6) nor equation (12) can be satisfied for any
value ofr. Therefore, neither in the fully radiative case nor in
the fully adiabatic case can the constant-index power-law ex-
pression in equation (3) be applied.

For clarity, we have integrated in Figure 2 an ideal GRB
afterglow with the initial conditions as in GRB 991216 for
selected higher values of the initial Lorentz gamma factor:

, 105, 107, and 109. For , we then see that,3 3g p 10 g p 100 0

again, in the fully radiative condition is never reacheda p 3eff

and that in the adiabatic case is only reached in thea � 3/2eff

region where . Similarly, for , in the fully510 ! g ! 50 g p 100

radiative case is only reached around the pointa � 3 g peff

, and in the adiabatic case for , al-2 210 a � 3/2 10! g ! 10eff

though the non–power-law behavior still remains in the early
and latest afterglow phases corresponding to the andg { g0
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regimes, respectively. The same conclusion can beg r 1
reached for the remaining cases and .7 9g p 10 g p 100 0

We like to emphasize that the early part of the afterglow,
where , which cannot be described by the constant-indexg { g0

power-law approximation, does indeed corresponds to the ris-
ing part of the afterglow bolometric luminosity and to its peak,
which is reached as soon as the Lorentz gamma factor starts
to decrease. We have shown (see, e.g., Ruffini et al. 2001,
2003, 2005b, and references therein) how the correct identi-
fication of the rising part of the afterglow and its peak is indeed
crucial for the explanation of the observed “prompt radiation.”
Similarly, the power law cannot be applied during the entire
approach to the Newtonian regime, which corresponds to some
of the actual observations occurring in the latest afterglow
phases.

5. CONCLUSIONS

It is well known that scaling laws and constant-index power-
law expressions are obtainable only in the asymptotic case of
ultrarelativistic regimes and in the Newtonian limit, while in
the fully relativistic regime the scaling laws break down (see,
e.g., Ruffini 1973). This circumstance is more subtle in GRB
afterglows: (1) the ultrarelativistic approximation is only a nec-
essary condition, butnot a sufficient one, for the existence of
scaling laws; (2) such a necessary condition implies values of
the initial Lorentz gamma factor outside the range currentlyg0

observed in GRB sources.

We have shown in § 3.1 that, in the fully radiative case, the
necessary ultrarelativistic condition for obtaining the appear-
ance of scaling laws is . We recall that the -values4g 1 10 g0 0

deduced typically for GRBs are of the order of (see,2g � 100

e.g., GRB 030329, GRB 020322, GRB 991216, GRB 980519,
GRB 980425, and GRB 970228; Ruffini et al. 2003, 2004,
2005a, and references therein). Thus, this necessary condition
is never fulfilled in GRBs.

It would appear from § 3.2 that thenecessary ultrarelativistic
condition for obtaining the appearance of scaling laws is less
severe in the adiabatic case: . However, this condition2g 1 100

is not sufficient for the applicability of the constant-index
power-law approximation to the entire afterglow, as clearly
shown in Figure 1. The regime is in fact approacheda p 3/2eff

only asymptotically and in a very limited region.
In the current literature (see references in § 1), a systematic

use of the constant-index power-law approximation for the
Lorentz gamma factor has been made. The regime hasg { g0

been generally neglected or erroneously matched to the con-
stant-index power-law approximation, hampering the under-
standing of the observed prompt radiation (see, e.g., Ruffini et
al. 2001, 2003, 2005b).

We expect that the data fromSwift will soon add observa-
tional evidence to the validity of this theoretical treatment.

We thank S. Blinnikov, J. Ehlers, and L. Titarchuk for dis-
cussions on the wording of our manuscript.
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